

|                                  | CASE: ONSHORE/REFINERY                                                                                                                                                                                        |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client / Country                 | Statoil Refining / Denmark                                                                                                                                                                                    |
| Project / Facility               | Fire & Gas Extension / Kalundborg Refinery                                                                                                                                                                    |
| Process / Plant /<br>Application | Fill-in detectors for 3 process areas after risk assessment determined inadequate coverage by current system                                                                                                  |
| Equipment /<br>Infrastructure    | 114 units GS01 / 8 units GS01-EA / Other detectors<br>3 Gateways / 18 Access Points / Siemens S7                                                                                                              |
| SIL or Non-SIL                   | SIL2 capable                                                                                                                                                                                                  |
| Main Challenges                  | Large, congested plant area. Enclosed spaces.                                                                                                                                                                 |
| Key Notes / Key Sales<br>Points  | Cost reductions with wireless – initial cost was estimated to be<br>around USD 20 mil. for HC and H2S detectors. With wireless<br>hydrocarbon detectors, costs could be brought down to roughly<br>USD 7 mil. |

# **Case Study** Fill-in detectors for Kalundborg refinery



Dräger

- Project was split into 3 phases (3 geographical areas)
- Placement of access points was based on existing knowledge for wireless on this site



## **Case Study** Fill-in detectors for Kalundborg refinery

<u>Phase 1 Block 1</u> <u>Detector locations</u> Green = GS01 Purple = Other



Block 1 area has wireless challenges due to heavy machinery blocking communication.

Detectors with extened antenna was chosen to overcome this challenge.

# **Case Study** Site pictures from Kalundborg





Dual access points with good access to a majority of the detectors.



Detector with remote antenna

## **Case Study** Site pictures from Kalundborg







#### Control room display with gas detectors

Wireless gas detector in the field

### **Case Study** Summary of experiences from Kalundborg



- Planning of wireless infrastructure placement can largely be done by visual inspection, but local circumstances can give surprises
- It is better to have some extra infrastructure and instruments installed or ready for use in case challenges occur during commissioning.
- Wireless technology increases the flexibility in placing and moving of equipment
- Expanding with additional instruments on wireless installations is very easy
- Using wireless for safety is a step change for any organization starting to use this. Local competence and understanding of wireless should therefore be developed
- We would have chosen wireless again today. Wireless is the future.